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The theory of electron capture in H+—H collisions at kilovolt energies is developed. A strong coupling is 
assumed between the electron ground states in the target and scattered atoms. The method depends on an 
approximation which amounts to neglecting terms of order K~l compared to 1, where K is the wave number 
in atomic units for the collision of the two protons. Calculations are made for lab energies from 0.6 to 50 
keV and the results compare favorably with the experimental results of Lockwood and Everhart. The 
center-of-mass correction accounts for the damping of resonances and otherwise produces a considerable 
effect. The method is applied to developing a formula for the relative probability for capture into an excited 
state. It is estimated that this probability is small. 

1. INTRODUCTION 

WHEN an ion with energy in the kilovolt range is 
incident on atoms or molecules, the probability 

that it will capture an electron from a target atom or 
molecule has been measured in a number of cases.1-"3 

The plot of a typical differential cross section for elec­
tron capture versus energy of the incident ion exhibits 
pronounced resonances. This suggests a strong coupling 
between certain states for the electron in the target atom 
and those for the electron in the incident ion. In Sec. 2 
the cross section for electron capture in the collision of a 
proton with a hydrogen atom is calculated on the as­
sumption that in such a collision the ground states of 
the electron in the target and incident nuclei are strongly 
coupled together, and that other states may be disre­
garded. The method used depends upon the fact that 
at these high energies the wavelength for the motion of 
the colliding nuclei is small compared to the size of the 
atom. The results of a calculation are compared with 
experiment. In Sec. 3 the application of the strong coup­
ling method is justified. The dependence on scattering 
angle and the effect of the center-of-mass correction 
are discussed. [Note added in proof. The center-of-mass 
correction referred to in this paper is equivalent to 
taking into account the momentum of the electron.] 
Reference is made to Appendix II where the method is 
applied to finding the probability for capture into an 
excited state. 

This problem has been considered in recent years 
by a number of investigators.4-12 The methods they 
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use are essentially perturbation methods or various 
modifications of the Born approximation. Some base 
their calculations on electron eigenfunctions of a quasi-
molecule while others use atomic eigenfunctions. The 
method used here is a perturbation method in a different 
sense since the emphasis is placed on the nuclei. The 
Coulomb wave function which represents the collision 
of two protons gets modified by the presence of the elec­
tron. The usual boundary condition that the wave func­
tion represent an incident and a scattered wave is suf­
ficient to determine the relative magnitude of the com­
ponents of the capture and the noncapture states that 
make up the scattered wave. 

2. THEORY AND CALCULATIONS 

The Schrodinger equation for the collision of a proton 
with a hydrogen atom is 

/¥ ¥ e? e2 e2 \ 
( — V*M—V r l *—+-+-+£ W=0, 
\M 2m R YX r% t 

(1) 

where M is the nucleon mass, ri, r2, are the distances of 
the electron from nuclei 1 and 2, the target and incident 
nuclei, respectively, R' is the distance from the cm. 
of the target hydrogen atom to 2, and R is the distance 
from 1 to 2. A general approach in solving this equation 
is to expand S& in terms of the eigenstates fi of the hydro­
gen atom,13 i.e., 

On substituting this into the Schrodinger equation and 
using the orthogonality property of the i/^s, we are led to 
a differential equation for Fi(Sf) which is the Schrod­
inger equation for a Coulomb field e?/R together with an 
interaction term, F i n t

l(^ /)=EmFm (R^Sr^fyfyJlt!. 
For the region Rf<^the Bohr radius a0, the sum £ m of 
Fmt* contains a significant contribution only from the 

• R. H. Bassel and E. Gerjuoy, Phys. Rev. 117, 749 (1960). 
i 0A, F. Ferguson, Proc. Roy. Soc. (London) A246, 540 (1961), 
11R. McCarroll, Proc. Roy. Soc. (London) A246, 547 (1961). 
12 D. R. Bates, Atomic and Molecular Processes (Academic 

Press Inc., New York, 1962), p. 549. 
13 N. F. Mott and H. S. W. Massey, The Theory of Atomic 

Collisions (Oxford University Press, London, England, 1949), 2nd 
ed., Ch.VIII . 

A1257 



A12S8 B E N J A M I N R O T H 

term m—l because of the orthogonality of the ^ , s . 
This circumstance uncouples the equations in the Fi$ 
and leaves them all as Schrodinger equations with a 
Coulomb field. For the range of collision energies 
spanned by our calculations, 0.6 to 50 keV (lab system), 
Kao varies from 140 to 1300, where K is the wave num­
ber for the colliding particles in the c m . system. We 
can therefore find an Rr which simultaneously satisfies 
the two conditions, R'<&ao and KR'^>1, for the range of 
K corresponding to the range of energies that will con­
cern us. This means that the solution starts out from 
j£' = 0 as a Coulomb scattered wave and reaches the 
asymptotic value of a Coulomb wave within the region 
R'<&ao. Of course, when K extends beyond this region, 
^ gets modified due to Vint-

We shall assume for ^ not the general superposition 
of states discussed above; rather, we write 

*=Fo(R')Mri)+Fc(R")Mr2), (2) 

F0 and Fc being the amplitudes for the electron in the 
initial and capture ground state, respectively; R", 
appropriately, is the distance from nucleus 1 to the 
center of mass of nucleus 2 and the electron. [The term 
Fc(R")\l/o(r2) is contained in the general expansion of 
the type ^CZ-FJC^O^OO'I).] Since ^ starts out from the 
origin as a Coulomb wave and is modified over the 
atomic dimension by a slowly varying interaction energy 
Vint, it is natural to assume for FQ and Fc, as we do be­
low, a Coulomb wave modified slowly over the extent 
of the atom; but the rapidly varying part of the 
Coulomb wave, namely, exp(iK-R) or exp(iKR), is 
retained. Now 

R ^ R - r i f i i J f - 1 

and 

R" = R-RniM-1+t1mM-1, 

and, therefore, 

K R ' ~ K R - £ r r i ? , 

KR'=KR-kxvR, (3) 

KR"=KR+kxr&, 

k=KtnM~1, 

where the first equation holds very approximately for 
the case we calculate in this section, namely, small 
angle scattering. In view of Eq. (3) and the above 
remarks about the mathematical form of ^ , we may 
write 

F»(R') = Fo(R) exp(-iktvR) 

Fc(R") = Fc(R)exp(ikt2.R). 

We substitute in Eq. (1) the ^ of Eqs. (2) and (4), 
multiply the resulting equation by ^o(fi) exp(ikti*R) 
and integrate over rx. This gives the equation 

(V2+K2-2aKRr1)FQ(R) 

+ 2aKiVoo(R)Fo+Voc(R)Fcl=0, (5) 

where a—e2/fivi v being the relative velocity of the two 
nuclei, and 

FooCK)= f"rrW(rOdTl9 (6a) 

Voc(R)= r rVo(f i )^o(r2)exppA(ri+r2)-^] i r i . (6b) 

We may, in the same manner, expand ^ around nucleus 
2; i.e., we substitute for ^ in Eq. (1) as above, multiply 
the resulting equation by fofa) exp(~ikr2'A), and 
integrate over r2. We then obtain the equation 

(V2+K2~2aKR~1)Fc(R) 

+2aKtVoo(R)Fc+Vo*(R)Fo]=0. (7) 

The coupled Eqs. (5) and (7) can be readily solved 
by a method described by Mott and Massey for the 
case of the strong coupling of two states in exact reso­
nance.14 By adding and subtracting these two equations 
we get the following equations: 

(V 2 +K 2 - 2aKR~l) (F0+Fc) 

+2aK(Voo+VocR)(F0+Fc) 

+i2aKVocI(F0-Fc) = 0, (8a) 

(V2+K2-2aKR-1)(Fo-Fc) 

+2aK(Voo-VocR)(F0-Fc) 

-i2aKVoci(F0+Fc) = 0, (8b) 

Foci^Re(Foc); F 0c7^Im(F 0 c*). (9) 

We assume solutions of the form 

F0+Fc=iI+±sm exp [^ + ( i ? )+g + ( J ? ) ] , (10) 

F 0 - F . = i / + | 5 / ( * ) exp[^_(2?)+g_( t f ) ] , (11) 

where I+Sf(&) is the Coulomb solution in the asymp­
totic region.16 The function / is essentially the incident 
wave part, exp(iK«R), and S is essentially the scattered 
wave part, exp(iKR)/R, of the Coulomb field solution. 
The function of the scattering angle, / (#) , is the 
Rutherford scattering amplitude. 

The solution given by Eqs. (10) and (11) satisfies 
the required boundary conditions, namely, that at 
infinity FQ become the sum of a plane wave and a 
scattered wave and Fc become purely a scattered wave. 
Furthermore, in view of the arguments preceding and 
following Eq. (2), the solutions to Eqs. (8a) and (8b) 
for i£<3C#o are the Coulomb field solutions I+Sf(&), so 
that as R —»0, <p± and g± go to zero. On substituting 
the solution given by Eqs. (10) and (11) into Eqs. (8a) 
and (8b) and neglecting terms of order K~x, we find that 
<p± and g± must satisfy the following differential 

14 Reference 13, p. 146. 
15 W. Gordon, Z. Physik 48, 180 (1928); also Ref. 13, p. 46. 
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equations: 

[ - <p++ig++a(Vw+VoeR)'] exp(i<p++g+) 
+iaVociexp(i<p-+gJ)+$+=0 (12) 

[ - <p-!+ig-+a{Voo- V0CR)~] exp(i<p-+gJ) 

—ta7 0 c j exp ( t> + +fo - )+^ -=0 (13) 

$ ± = 2 / [ 5 / ( ^ ) ] - 1 [ a ( F 0 0 ± Fo,*)±*a7orf] . 

The prime indicates the operator d/dR. 
As a first approximation to the solution of the coupled 

differential equations (12) and (13) we take 

-<p±'+a(Voo±VoCR) = 0} (14) 

g± exp(g±)±aVoci exp(gT) = 0. (15) 

Equation (14) follows approximately from Eqs. (12) 
and (13) because Voci is small compared to Foo or VOCR 
and because g± is small compared to the quantities 
of Eq. (14). Also, the terms $± have many oscillations 
over a Bohr radius and they therefore contribute negli­
gibly when Eq. (14) is integrated. This integration 
gives 

<P±=(po±<p, 

<Po(R) 
pit 

Jo 

<p(R)=<x[ V0cBdR. 
Jo 

(16) 

Equation (15) with the upper sign is obtained by 
multiplying Eq. (12) by exp(—i<po), subtracting from 
it Eq. (14), and taking the imaginary part of the re­
sulting equation. The term in <£+ is discarded for the 
same reason as above. Equation (15) with the lower 
sign is obtained in the same manner from Eq. (13). 

To solve Eq. (15) we first multiply the equation with 
the upper sign by exp(g+) and the one with the lower 
sign by exp(g_) and add the two resulting equations, 
giving, 

d d 
exp (g+)—[exp (g+)]+exp («-)—[exp (g_)] 

dR dR 
1 d 

= [ e x p ( 2 g + ) + e x p ( 2 ^ ) ] = 0 . (17) 
2dR 

.'. exp(2g+)+exp(2g_) = const=2, 

since 2 is the value of the constant near P = 0 . Equation 
(15) now becomes 

[2-exp(2g±)]-^—[expfofc)] 
dR 

and therefore, 

exP[g±CK)]=V2 sin \\<x^a( V0cidR~\. (18) 

We are now in a position to calculate the relative 
probability for electron capture Po. From Eqs. (10), 
(11), and (16) we find the absolute probability for elec­
tron capture, | Fc |

2, given by the equation 

l^c | 2 =i | /W| 2 | exp(^ 0 ) 

X [ e x p ( ^ + ^ + ) - e x p ( - i ^ + ^ _ ) ] | 2 . 

By definition the relative probability is given by 

Po=\Fc\*/(\Fc\>+\F0\
2). 

Since by our assumption we have | Fo \ 2 + 1 Fc \
 2 = | / (#) |2, 

P o = i { cosVOxp (g+) - exp (gJ)J 

+sinV[exp(g+)+exp(^_)]2} . (19) 

The cp and g± which appear in this equation and which 
are given by Eqs. (16), (18), (6b), and (9) are to be 
evaluated at R= oo. These quantities are evaluated in 
Appendix I. According to Eqs. (16) and (A3) 

<p=2e*(l+£2)--2. (20) 

The energies corresponding to the maxima and minima 
of Po are, according to Eq. (19), given by solving for 
k in the equation 

2a/(l+£2)2=imr, (21) 

with odd n's corresponding to maxima and even n*s 
to minima. We use atomic units for all quantities and in 
those units 

£ = 0.100 (EiabinkeV)1'2. 

A useful relation in these units is ak—\, and this enables 
us to write Eq. (21) as 

l / [ £ ( l + £ 2 ) 2 ] = > - , (22) 

dR 
{s in - t exp^yvJ ]} = =FaF0cJ 

n being an integer. 
The energies given by Eq. (22) are displayed in the 

upper and lower parts of the graph in Fig. 1, together 
with reference marks. The theoretical curve of Fig. 1 
was calculated on the basis of Eq. (19). The quantities 
<p and g± were taken in the first approximation, as 
represented by Eqs. (16), (18), (A3), and (A5). 

Second approximation to <p and g±. From Eqs. (12), 
(13), and (16) we may write: 

-[<p+'+a(Voo+ Vocidl+ig+'+iaVoci 

Xexp(-i2<p+g--g+)+&+exp(-i<p+-g+) = 0, 

-[<p+'+a(Voo-VocR)2+ig--iaVoci 

Xexp(i2<H-&f-g-)+$- exp(-*>_-g_) = 0. 

To proceed to a second approximation we let 

<p±'=<pi±'+A<p±', 
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FIG. 1. The graph shows a comparison between theory and 
experiment for electron capture probability P0 . An empirical 
curve was drawn by Lockwood and Everhart (Ref. 2) through 
their experimental points; it is reproduced here as the dashed line 
curve. The full line curve was calculated on the basis of Eq. (19). 
A first approximation was used in calculating the phase angle and 
damping factor appearing in that equation, as described in the 
text. The reference marks with numbers above and below the 
graph show the calculated maxima and minima. 

where <pi± is the first approximation quantity which 
satisfies Eq. (14). On substituting for g±' from Eq. (15) 
and discarding the terms # ± for the reasons given 
earlier, we obtain 

A<p+'=aVoci exp(g^-g+)lsm2<p-i(l-cos2<p)"2, 
A^„/=aFocjexp(g+—^__)[sin2^+^(l—cos2^)]. 

Integration gives 

Re (A <p+)=al VQCI sin2 cp exp (g_— g+)dR, 

(24) 

Re (A <pJ)=a j VQC J sin2 <p exp (g+—gJ)dR. 

This second-order approximation to <p± will introduce 
a correction in <p which, according to Eq. (16) and the 
equation preceding Eq. (19), is given by 

A<p=4(A +̂—A<pJ) 

= ia VQCI sin2<p 

Xtexp(g^~-g+)-exp(g+-gJ)']dR. (25) 

The imaginary part of A(p± which results from integrat­
ing Eqs. (23) is, according to Eqs. (10) and (11), 

equivalent to a correction in g±. We may therefore write 

Ag+= —Im(A^+) = 2a / V0ci sin2<p exp(g_—g+)dR 

(26) 

A&.= — Im(A^>_) = — 2a / VQCI sin2<p 

Xexp(g+-gJ)dR. 

3. DISCUSSION 

The theoretical plot in Fig. 1, based on a first approxi­
mation to the solution of Eqs. (12) and (13), appears 
to be in good agreement with experiment, particularly 
with regard to the location in energy of the maxima and 
minima of Po. A second approximation calculation was 
made using Eqs. (25) and (26). The integrands in these 
equations were evaluated numerically using Eqs. (A4), 
(16), (A2), and (18) for values of the quantities Voci, <p, 
and g± that appear in the integrands. Calculations for 
energies varying from 50 to 4 keV gave values for A<p 
varying between 0 and 0.1, while <p itself, in this energy 
interval, ranges from 0.63 to 4.9. This justifies confi­
dence in the first approximation for <p as given by Eqs. 
(14) and (16). It also explains why the theoretical 
maxima and minima agree so closely with the experi­
mental ones in Fig. 1, for their locations depend upon 
<py as given by Eqs. (20) and (22). The corrections to 
g± given by Eq. (26) were, however, in most cases equal 
to, or slightly larger than, g±. For such cases we would 
need a third approximation correcting Eq. (15), due to 
Eq. (14) not holding in the second approximation. For 
energies above 35 keV the second approximation cor­
rection to g± given by Eq. (26) is a safe improvement to 
the first approximation of g. The trend in such calcula­
tions is illustrated in Table I. For 34 keV the Ag+ is 
about equal to g+. As the energy increases, Ag± becomes 
smaller than g± and the second approximation is valid; 
as the energy decreases below 34 keV, Ag+ becomes larger 
than g+. This is reflected in the improvement of the 
second approximation over the first one for energies 
above 34 keV, and in the fact that for such energies 
iFop+l^cl2 retains the value of 1 after the second 
approximation. 

It should be noted that Po was calculated on the 
assumption that the electron will be only in the ground 

TABLE I. Trend of 2nd approximation calculations based on 
the correction Ag+ to the damping factor g+. 

Capture probability Po 
E 1st 2nd 

(keV) g+ Ag+ approx. approx. expt* | F 0 | 2 + | F C | 2 

~22^ -0.485 0.704 087 U) 085 L2 
34.0 -0.376 0.370 0.64 0.74 0.70 1.0 
50.0 -0.282 0.133 0.36 0.39 0.45 1.0 

a Reference 2. 
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state of the target or scattered atom. In the experiment 
of Lockwood and Everhart2 on H+—H collisions, Po 
was determined by measuring the fraction of neutral 
scattered particles to total scattered particles, without 
regard to states of excitation in the scattered or target 
systems. The favorable comparison of theory with 
experiment seems to indicate that the probability for 
capture with excitation is small. The method developed 
in the preceding section may be used to calculate this 
probability. In Appendix II we indicate how this may 
be done. The result for Pn , the relative probability for 
capture into an excited state \l/n is given by Eq. (A 17). 
The capture state \l/n and the initial state \//Q are coupled 
together through a phase angle called f, which corre­
sponds to <p for capture in the ground state. It can be 
seen from Eq. (A 16) that f is very small since the 
orthogonality of I/'O and ^w makes VonR small. For the 
same reason Von and Vcn are small, leading to the result 
exp(p+)^exp(pJ). It then follows from Eq. (A 17) that 
P» is very small. This argument gets weaker as the 
energy decreases, due to the factor a in f. 

The quantities <p and g± that determine the magni­
tude of Po in Eq. (19) have no dependence on the scat­
tering angle #. The angle & entered into the first one of 
Eqs. (3), but this would affect only the quantities <f>± 

of Eqs. (12) and (13), and we concluded that these 
quantities give no significant contribution. Therefore 
we expect the curve of Po in Fig. 1 to be independent of 
scattering angle. 

If we were to disregard the effect due to the change in 
the cm., as represented by Eq. (4), the results would be 
considerably affected. Such an omission would have 
the effect of putting k=0 in the expression for VQC, 
Eq. (6b). This in turn would make k=0 in Eq. (21) 
and would shift the resonances and antiresonances in 
the theoretical curve of Fig. 1 in the following manner: 
The resonances at 19.8 and 3.88 keV would be shifted 
to 40.5 and 4.5 keV, respectively. The antiresonances at 
7.50 and 2.3 keV would be shifted to 10.2 and 2.5 keV, 
respectively. Such shifts would materially reduce the 
agreement with experiment. A more drastic effect of 
disregarding the cm. correction results in making 
Vod, Eq. (A2a), equal to zero. This would make 
exp(g±) = l and would result in the disappearance of 
damping. The Po curve of Fig. 1 would then oscillate 
between maxima and minima of 1 and 0. As it turned 
out in this problem the damping of the resonances and 
antiresonances is a sensitive part of the theory. While 
the location in energy of the maxima and minima is 
given directly by the first approximation, the factors 
exP(g±) which determine the damping require several 
approximations and depend critically on the potential. 

APPENDIX I: EVALUATION OF THE 
QUANTITY Voc(R) 

To evaluate Voc(R) it is convenient to use elliptic 
coordinates. We place the origin O of the electron co-

IN H + - H C O L L I S I O N S A1261 

ordinates midway between the two nuclei, designate the 
internuclear distance R by 2a, and let the z axis be 
along R. The elliptic coordinates £, rj, <p, of the electron 
are defined as follows: 

£= (ri+r2)/2a; y= (r1-r2)/2a; 
and <p is the azimuthal angle. 

As before, the distances of the electron from nuclei 1 
and 2 are designated by r\ and r2. The volume element is 

dr=a*(?-rp)d$drid<p: 

A further useful relation is z=a^rj. The normalized 
ground-state wave functions for the electron are, in 
atomic units, 

^0(f1) = 2exp(-r1)/(47r)1/2; 

^o(r2) = 2exp(-r2)/(47r)1/2. 

Referring to Eq. (6b) and using elliptic coordinates, 
we obtain, after integrating over <p, 

/.+1 ,.00 

F0c(i?)=§W dv exp[-l?£(l-*&?)]#£ 

/.+1 /»oo 

- J P 2 / drj e x p [ - P K l - ^ ) > Z £ . (Al) 

Integration gives a real result for the first term on the 
right and an imaginary result for the second term. In 
accordance with our notation earlier, we call the first 
term VOCR(R) and the second term (excluding the nega­
tive sign) Foci(P). The first term is integrated simply, 
giving 

e~R(sinkR+k coskR) 
VOCR(R)= (A2) 

and 

VOCR= f V0cR(R)dR=2/(l+k*)K (A3) 
Jo 

The second term may be first integrated over rj, and 
after a partial integration over £ we arrive at the 
expression 

e~RsinkR R z100 sinib; 
Vod(R)= / •€-*- dx. (A2a) 

» »JR x 

The integral on the right can be evaluated by expanding 
sin&# as a series in powers of x and then integrating each 
term. This leads to the following result: 

Vod(R) = e-R£smkR-RS(k,R)2/k2, 

&2»+i 

S(k,R) = ?:(-)n——v(2n), 
n=0 (2W+1) 
2n P« 

K2»)=23 — • (A4) 
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It can easily be shown, either by this series or by working 
directly with the second term on the right of Eq. (Al), 
that 

Jo 
VM(R)dR=k/(l+»?. (A5) 

APPENDIX II: DERIVATION OF A FORMULA FOR 
THE PROBABILITY OF CAPTURE INTO AN 

EXCITED STATE 

Let us consider an excited state 4>„ in the scattered 
atom. If we denote its scattering amplitude by fn(R"), 
we write, in place of Eq. (2), 

^=F,(R')Mn)+Fc(R")Mr2)+fn(R")4'n(ri), (A6) 

and in place of Eqs. (5) and (7) we write 

(V*+K*-2aKBrl)F9 

+2aK(VwF0+VacFc+Vonfn) = 0, (A7) 

(y*+K*-2aKR-1)fn 

+2aK(Wnnfn+V<,n*F0+VcnFc) = 0, (A8) 

F0„= / ri-tyoMiM^) exp[*fe(ri+rs)-iJ]rfri 

J (A9) 

Wnn=Vnn+EQ-En 

V*n= [rr1\*»(ri)\,dt„ 

where Eo and En are the energies of the ground and 
excited states, respectively. By adding and subtracting 
Eqs. (A7) and (A8) we obtain, in analogy to Eqs. (8a) 
and (8b), the following coupled equations: 

(V 2 +£ 2 - 20KR-1) (F0+fn)+2aKU=Q 

(•Vi+Ki-2aKR-1)(F0-fn)+2aKT=0 

V= [h(VM+Wnn)+VonR](Fo+fn) 
+ [§ (Foo-W„«)+*F„„/] (F„-/„) 

+ (Voc+Vcn)Fc (A10) 

T= [ § ( 7 M + W . . ) - VonnWo-fn) 

+ (V<,c-Vcn)Fc 

FonB=Re(F0„); Fo„r=Im(F0n*). 

As we did in Eqs. (10) and (11), we assume solutions 

of the form 

F»+fn=%I+hSM ap(&++p+) 
F o - / . = R H W ) exp(*f_+£_). 

On substituting these solutions into Eqs. (A10), and 
following the procedure that led to Eqs. (12) and (13), 
we obtain the following differential equations: 

Xexp(i?++p+)+iaVoni exp (#_+£_)+X=0 , 
-r-'+ip-'+cMOrK+w.,)- Fo„«] 

Xexp(X-+pJ)-iaVoniexp(tf++/>+)+ F = 0 , (A12) 
X=\{VM-Wnn) exp(tf_+^_) 

+ (Voe+Ven)Fc/lSmi, 
Y**t(.VM-Wnn) exp(X++P+) 

+ (.V0a-V„)Ft/lSf(p)]. 

Apart from the terms X and F, Eq. (A12) has the same 
appearance as Eqs. (12) and (13). By the same reason­
ing that led to Eqs. (14) and (15) we take as a first 
approximation, 

-r±'+aCKFoo+TFB„)±FOBR]=0 (A13) 

P+' exp(/>+)+aF0„r exp(/>_)+Im(X)/cosf=0, (A14) 

£_'exp(/>_)-aFonrexp(/>+)+Im(F)/cosf=0. (A15) 

The solution to Eq. (A13) is 

r±=ro±r, 

fo; 

r= 

(Vw+Wn»)dR, 
Jo 

= « / VonRdR. 
Jo 

(A16) 

The integration of Eqs. (A14) and (A1S) can be 
simplified by noting that Von and Vcn are small, and 
therefore exp(^+)~exp(£_). The value of Fc is known, 
being given by Eqs. (10) and (11). In the same manner 
that we arrived at Eq. (19), we obtain for the relative 
probability Pn for capture into the state n, 

P„=i{cos2f[exp(^)-exp(^_)]2 

+sin2f[exp(^+)+exp(^)J}, (A17) 

since fn is small compared to Fo and Fc. 
The problem of finding the probability for the scat­

tering of the ion with the target atom being left in a 
certain excited state can be treated by this method. 
One would then let \f/n be an excited state in the target 
atom and derive the corresponding matrix elements. 


